Разработка предназначена для анализа форм скважин по данным, полученным при полевых исследованиях горных пород. Данные экспериментальных замеров передаются приложению в виде множества точек, на основе которых производится построение разреза скважины, в первом приближении эллиптического. Восстановление формы среза скважины основано на многократном повторении алгоритма, использующего метод наименьших квадратов; на каждой итерации промежуточный результат приближается к реальному срезу. В процессе реконструкции происходит определение параметров среза скважины – его осей и отклонения исходного (предполагаемого) центра от рассчитанного. Результирующая фигура получается аппроксимацией контура сплайнами Акимы (Akima spline) и переносом системы координат в расчётную точку центра.
На начальных стадиях проекта разрезы представлялись в упрощённой эллиптической форме, однако в настоящее время приложение выполняет построение более сложных фигур, лучше описывающих реальную форму скважины. Данная разработка позволяет существенно сократить количество экспериментальных замеров в процессе исследования породы и производить моделирование с помощью рассчитанных форм.
Использованная литература по теме:
-
- Hiroshi Akima. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures – Journal of ACM, Vol. 17, Issue 4, 1970. – P. 589 – 602. – http://dl.acm.org/citation.cfm?id=321609&dl=ACM&coll=DL
- Radim Halir and Jan Flusser. Numerically Stable Direct Least Squares Fitting of Ellipses – Proc. WSCG'98, 1998. – P. 125 – 132.